179 research outputs found

    Environmental and health-related external costs of meat consumption in Italy: estimations and recommendations through life cycle assessment

    Get PDF
    The literature on the external costs of food consumption is limited. This study aims at advancing in this field by translating the environmental and health-related impacts generated by the life-cycle of meat into external costs via monetization. The main types of meat consumed in Italy are used as a case study. The potential external costs are estimated via attributional life cycle assessment (LCA), using: i) the ReCiPe method for the environmental impact assessment (fourteen impact categories), ii) the population attributional fractions for the health damage from meat ingestion, and iii) the CE Delft environmental prices for monetization. Results show that processed pork and beef generate the highest costs on society, with an external cost of approximately 2€ per 100 g. Fresh pork and poultry follow, with a cost of 1€ and 0.5€ per 100 g, respectively. For comparison, the potential external costs of legumes (i.e., a plant-based alternative to meat) are estimated to be from eight to twenty times lower than meat (around 0.05€ per 100 g of legumes). In 2018, meat consumed in Italy potentially generated a cost on society of 36.6 bn€. The burden arises almost equally from impacts generated before meat ingestion (mainly associated with the emissions arisen from farming), and after the ingestion (due to diseases potentially associated with meat consumption). A sensitivity analysis on the main parameters revealed a large uncertainty on the final yearly cost, ranging from 19 to 93 bn€. Although more research is needed to improve the accuracy and the validity of the models used in the study (e.g., human health impact assessment, monetization) and to include potential external costs currently unaccounted for (e.g., water use, animal welfare, occupational health), results show unequivocal significant costs associated with meat consumption. We thus advocate for policies aimed at reducing these costs and allocating them properly

    Lab and Field Tests of a Low-Cost 3-Component Seismometer for Shallow Passive Seismic Applications

    Get PDF
    We performed laboratory tests and field surveys to evaluate the performance of a low-cost 3-component seismometer, consisting of three passive electromagnetic spring-mass sensors, whose 4.5 Hz natural frequency is extended down to 0.5 Hz thanks to hyper damping. Both lab and field datasets show that the −3 dB band of the seismometer ranges approximately from 0.7 to 39 Hz, in agreement with the nominal specifications. Median magnitude frequency response curves obtained from processing field data indicate that lower corner of the −3 dB band could be extended down to 0.55 Hz and the nominal sensitivity may be overestimated. Lab results confirm the non-linear behavior of the passive spring-mass sensor expected for high-level input signals (a few to tens of mm/s) and field data confirm relative timing accuracy is ±10 ms (1 sample). We found that absolute timing of data collected with USB GPS antennas can be affected by lag as large as +0.5 s. By testing two identical units, we noticed that there could be differences around 0.5 dB (i.e., about 6%) between the components of the same unit as well as between the same component of the two units. Considering shallow passive seismic applications and mainly focusing on unstable slope monitoring, our findings show that the tested seismometer is able to identify resonance frequencies of unstable rock pillars and to generate interferograms that can be processed to estimate subsurface velocity variations

    SpectroscopicTechniques and DFT Calculations to Understand Charge Transport Mechinisms in OFETs

    Get PDF
    The organic electronics research field has advanced tremendously in the last decades, but there is still an incomplete understanding of the main mechanisms governing charge injection and transport in such devices. The performance of organic semiconductors is governed not only by their molecular structures but also by their intermolecular assembly in the solid state. Here we use a combination of Raman spectroscopy and charge modulation spectroscopy (CMS) to gather information on molecular and supramolecular levels, of organic semiconductors [1,2] (Figure 1) [3]. This last one is an optical-spectroscopy technique conducted on a real OFETs, that allows us to study in situ the charge carriers present at the semiconductor-dielectric interface, where the largest contribution to charge transport occurs. [3] In this communication we will present the study of the bithiophene imide (BTIn) molecules which exhibit encouraging electron mobilities in OFETs [1,2], by using the spectroscopic techniques presented above, supported by DFT quantum chemical calculations in order to shed light on the mechanism of charge transport in OFETs.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    state of the art and perspectives of inorganic photovoltaics

    Get PDF
    In the last decade, the fast increase of the global energy consumption, mainly related to the strong economic growth in the Far East, and the progressive depletion of the fossil fuels induced a run-up in the world oil price. Both these economic concerns and the growing global pollution pointed out that a transition toward renewable energies is mandatory. Among renewables, the conversion of sunlight into electricity by photovoltaic (PV) devices is a reliable choice to cope the growing energy consumption, due to the huge potentially extractable power (up to 120000 TW). The most important classes of inorganic PV devices developed in the last sixty years will be reviewed in this paper, in order to depict the state of the art of the technologies which dominate the PV market. Some novel concepts which could have an important role in the future of PV will be also described

    Effects of Oscillation Amplitude Variations on QCM Response to Microspheres of Different Sizes

    Get PDF
    Suspended particulate matter (PMx) is one of the most important environmental pollutants. Miniaturized sensors capable of measuring and analyzing PMx are crucial in environmental research fields. The quartz crystal microbalance (QCM) is one of the most well-known sensors that could be used to monitor PMx. In general, in environmental pollution science, PMx is divided into two main categories correlated to particle diameter (e.g., PM < 2.5 µm and PM < 10 µm). QCM-based systems are capable of measuring this range of particles, but there is an important issue that limits the application. In fact, if particles with different diameters are collected on QCM electrodes, the response will be a result of the total mass of particles; there are no simple methods to discriminate the mass of the two categories without the use of a filter or manipulation during sampling. The QCM response depends on particle dimensions, fundamental resonant frequency, the amplitude of oscillation, and system dissipation properties. In this paper, we study the effects of oscillation amplitude variations and fundamental frequency (10, 5, and 2.5 MHz) values on the response, when particle matter with different sizes (2 µm and 10 µm) is deposited on the electrodes. The results showed that the 10 MHz QCM was not capable of detecting the 10 µm particles, and its response was not influenced by oscillation amplitude. On the other hand, the 2.5 MHz QCM detected the diameters of both particles, but only if a low amplitude value was used

    Ternary organic photodetectors based on pseudo–binaries nonfullerene–based acceptors

    Get PDF
    The addition of a third component to a donor:acceptor blend is a powerful tool to enhance the power conversion efficiency of organic solar cells. Featuring a similar operating mechanism, organic photodetectors are also expected to benefit from this approach. Here, we fabricated ternary organic photodetectors, based on a polymer donor and two nonfullerene acceptors, resulting in a low dark current of 0.42 nA cm−2 at −2 V and a broadband specific detectivity of 1012 Jones. We found that exciton recombination in the binary blend is reduced in ternary devices due to the formation of a pseudo-binary microstructure with mixed donor–acceptor phases. With this approach a wide range of intermediate open-circuit voltages is accessible, without sacrificing light-to-current conversion. This results in ternary organic photodetector (TOPD) with improved Responsivity values in the near-infrared. Moreover, morphology analyses reveal that TOPD devices showed improved microstructure ordering and consequentially higher charge carrier mobilities compared to the reference devices

    Quartz Crystal Microbalances for Space: Design and Testing of a 3D Printed Quasi-Kinematic Support

    Get PDF
    Outgassing or thruster’s generated contaminants are critical for optical surfaces and optical payloads because scientific measurements and, in general, the performances can be degraded or jeopardized by uncontrolled contamination. This is a well-known issue in space technology that is demonstrated by the growing usage of quartz crystal microbalances as a solution for measuring material outgassing properties data and characterizing the on-orbit contamination environment. Operation in space requires compatibility with critical requirements, especially the mechanical and thermal environments to be faced throughout the mission. This work provides the design of a holding structure based on 3D printing technology conceived to meet the environmental characteristics of space application, and in particular, to face harsh mechanical and thermal environments. A kinematic mounting has been conceived to grant compatibility with a large temperature range, and it has been designed by finite element methods to overcome loading during the launch phases and cope with a temperature working range down to cryogenic temperatures. Qualification in such environments has been performed on a mockup by testing a prototype of the holding assembly between −110 °C and 110 °C and allowing verification of the mechanical resistance and stability of the electrical contacts for the embedded heater and sensor in that temperature range. Moreover, mechanical testing in a random environment characterized by an RMS acceleration level of 500 m/s2 and excitation frequency from 20 to 2000 Hz was successfully performed. The testing activity allowed for validation of the proposed design and opened the road to the possible implementation of the proposed design for future flight opportunities, also onboard micro or nanosatellites. Moreover, exploiting the manufacturing technology, the proposed design can implement an easy assembling and mounting of the holding system. At the same time, 3D printing provides a cost-effective solution even for small series production for ground applications, like monitoring the contaminants in thermo-vacuum chambers or clean rooms, or depositions chambers

    Clinical care conditions and needs of palliative care patients from five italian regions: Preliminary data of the demetra project

    Get PDF
    In order to plan the right palliative care for patients and their families, it is essential to have detailed information about patients’ needs. To gain insight into these needs, we analyzed five Italian local palliative care networks and assessed the clinical care conditions of patients facing the complexities of advanced and chronic disease. A longitudinal, observational, noninterventional study was carried out in five Italian regions from May 2017 to November 2018. Patients who accessed the palliative care networks were monitored for 12 months. Sociodemographic, clinical, and symptom information was collected with several tools, including the Necesidades Paliativas CCOMS-ICO (NECPAL) tool, the Edmonton Symptom Assessment System (ESAS), and interRAI Palliative Care (interRAI-PC). There were 1013 patients in the study. The majority (51.7%) were recruited at home palliative care units. Cancer was the most frequent diagnosis (85.4%), and most patients had at least one comorbidity (58.8%). Cancer patients reported emotional stress with severe symptoms (38.7% vs. 24.3% in noncancer patients; p = 0.001) and were less likely to have clinical frailty (13.3% vs. 43.9%; p < 0.001). Our study confirms that many patients face the last few months of life with comorbidities or extreme frailty. This study contributes to increasing the general knowledge on palliative care needs in a high-income country
    • …
    corecore